
Mitigating Datacenter Incast Congestion Using RTO
Randomization

Ubaid Ullah Hafeez, Aqsa Kashaf, Qurat-ul-ann Bajwa,
Hassan Zaidi, Ihsan Ayyub Qazi, Zartash Afzal Uzmi

SBA School of Science and Engineering, LUMS

Aisha Mushtaq
Microsoft Corporation

Vancouver, Canada

Abstract—TCP incast congestion happens in many-to-one com-
munication workflow patterns that frequently arise in large-scale
datacenter applications such as web search, social networks,
and cluster-based storage systems. Incast congestion can severely
degrade the performance of applications. This paper studies the
effectiveness of randomizing the TCP retransmission timeout
(RTO) in mitigating the impact of incast. Our design is based on
the observation that under incast, retransmitted packets also get
synchronized due to the use of similar RTOs by the senders. Using
analysis and experimental evaluation, we show that there exists
a tradeoff between the randomization interval (from which the
RTO values are picked) and the number of senders involved in
incast. Motivated by this insight, we propose three algorithms
(TDA, MAA, and FSA) for the dynamic adaptation of the
randomization interval that rely on (a) successive timeouts, (b)
explicit knowledge of the level of multiplexing, and/or (c) the
knowledge of flow sizes (i.e., large interval for long flows and
a small interval for short flows), respectively. Our results show
that these algorithms improve goodput by 1.5x–11x for up to
64 senders and provide greater improvement for larger number
of senders. The proposed algorithms can be readily deployed as
they do not require any changes in switches or applications.

I. INTRODUCTION

Popular datacenter applications (e.g., web search, social
networking, and cluster-based storage systems) achieve scal-
able performance by exploiting massive parallelism [1]. Thus,
a single application task such as answering a search query
or building a user’s social news-feed involves making read
requests to many servers concurrently. Such application tasks
are often barrier synchronized because a client cannot make
progress until responses from all servers are received. The
responses from these servers often arrive synchronously at a
common receiver leading to throughput collapse due to TCP
timeouts and packet losses. This throughout collapse under
many-to-one communication patterns is called incast conges-

tion [2] and has been widely observed in many production
datacenters (e.g., Bing [3], Facebook [4], Cosmos [5]). Incast
congestion can severely degrade performance by increasing
response times for the users.

The impact of incast congestion in datacenter networks is
exacerbated by (a) the use of Top-of-Rack (ToR) switches
with shallow buffers and (b) the presence of long-lived TCP
flows that keep high buffer occupancy and thus reduce the
ability of switch buffers to absorb large packet bursts due to
synchronized server responses. Prior solutions have focussed
on either (i) controlling switch buffer occupancy to avoid

overflow by using ECN and/or a modified congestion control
algorithm at the end-hosts [6], [7], (ii) reducing duplicate ACK
threshold, or (iii) reducing the waiting time for recovering
from packet losses by decreasing the TCP retransmission
timeout (RTO) [2].

This paper studies the effectiveness of randomizing TCP
retransmission timeouts, first suggested in [2], in mitigating
incast congestion. Our approach is based on the observation
that under incast, retransmitted packets also get synchronized
due to the use of very similar RTOs (we term this phenomena
as RTO synchronization) as also reported in [2]. This can
lead to losses for retransmitted packets, which considerably
degrades goodput. RTO synchronization happens because (a)
senders involved in incast congestion usually have similar
round-trip propagation delays because such communication
is mostly within a rack or cluster (comprising of co-located
racks) [1] and (b) the minimum TCP retransmission timeout
(RTOmin) is generally much larger than the round-trip times
(RTTs) within datacenters1. This causes all senders to use the
same timeout value (equal to RTOmin) [2], [7], thereby leading
to synchronous arrival of retransmitted packets. The loss
of retransmissions is particularly detrimental for application
performance because TCP increases RTO exponentially on
every successive timeout.

Our results show that the performance gains from RTO
randomization critically depend on the choice of the ran-
domization interval (i.e., the interval from which the senders
randomly pick a value for the RTO). In particular, we show
that there exists a tradeoff between the number of senders
in an application task and the length of the randomization
interval. While a small interval improves goodput when the
number of senders are small, a large interval actually de-
creases goodput in such cases. Similarly, when the number
of senders are large, using a small interval degrades goodput.
Thus, no single interval is optimal in all cases. Motivated
by this insight, we propose three algorithms for the dynamic
adaptation of RTOmin: (a) Timeout-Driven Adaptation (TDA),
(b) Multiplexing-Aware Adaptation (MAA), and (c) Flow-Size

Aware Adaptation (FSA). With TDA, the RTO randomization

1The default TCP RTOmin in Linux is usually 200 ms whereas typical
intra-rack RTTs are less than 0.1 ms [8]. Most operating systems track RTTs
and timers at the granularity of 1ms or larger. Thus, it is challenging to reduce
RTOmin below 1ms without increasing system overhead due to the use of
high resolution timers [2], [9].

978-1-4799-5952-5/15/$31.00 ©2015 IEEE

interval is increased exponentially on every successive timeout.
This is similar to the backoff algorithm used in IEEE 802.11
wireless protocols [10]. Under the MAA algorithm, each flow
uses the explicit knowledge of the number of flows involved
in an application task to dynamically select an interval. In
FSA, the randomization interval is chosen based on the size
of a flow; long flows use a larger randomization interval than
short flows as the former flows tend to saturate the bottleneck
and drive the buffer occupancy. Introducing size awareness
implicitly prioritizes short flows over long flows during times
of network congestion. The size of flows is estimated based
on the amount of bytes sent so far as done in [11], [12].

Our evaluation shows that these dynamic algorithms provide
goodput improvements that range from 1.5x–11x across a
range of senders (e.g., 4–64 senders) involved in an application
task. The improvement is even larger when there are more
senders involved in a task. Among the proposed dynamic
adaptation algorithms, FSA generally performs better than
other schemes because (a) it reacts to instantaneous timeout
events and (b) treats long flows and short flows differently.
While MAA performs well in many scenarios, its performance
suffers in the presence of background TCP flows as it does
not account for the heterogeneity in flow sizes and thus, their
impact on the network.

RTO randomization is complementary to approaches that
reduce the cost of timeouts by reducing RTO [2] be-
cause the latter approaches do not desynchronize transmis-
sions/retransmissions and thus can still lead to goodput degra-
dation under successive timeouts. Moreover, unlike several
previous solutions, TCP RTO randomization does not require
changes in applications or network switches, which is very
helpful for ease of deployment and adoption.

Altogether, this paper makes the following contributions.

• We show that there exists a fundamental tradeoff between
the number of senders involved in an application task and
the length of the randomization interval.

• We propose algorithms for dynamic adaptation of TCP
RTO that rely on either observed timeouts, explicit knowl-
edge of the level of multiplexing, and/or knowledge of
flow sizes.

• We evaluate the proposed algorithms under typical data-
center specific traffic patterns using extensive packet-level
simulations and show that they can provide substantial
goodput improvements under incast scenarios. Moreover,
these algorithms can also improve performance under
non-incast scenarios especially under high network loads.

The rest of the paper is organized as follows. We discuss
related work in Section II and the incast impairment in
Section III. We analyze the impact of randomization interval
on application performance and present dynamic adaptation
algorithms in Section IV. The evaluation results are presented
in Section V. We offer concluding remarks in Section VI.

II. RELATED WORK

Prior approaches on mitigating incast congestion can be
placed into four categories.

Fig. 1. Intra-rack topology used in our evaluation [1], [12].

The first category of approaches aim to avoid timeouts.
Some notable approaches include (a) application-level jitter-

ing, in which senders adds random delay in the transmission of
packets but requires changes in applications and increases the
mean latency [6] and (b) reducing the duplicate ACK threshold
from three to one of entering fast retransmission. However,
this makes TCP more sensitive to packet reordering thereby
making fine-grained load balancing hard in datacenters [13].

The second category of schemes reduce the cost of time-
outs by reducing RTOmin. Vasudevan et al. [2] proposes
to reduce RTOmin to microsecond granularity, however, this
requires high resolution timers that are difficult to implement
in practice and introduce high system overhead [9]. Moreover,
such schemes do not desynchronize transmissions. As a result,
successive timeouts can still result in performance degradation.
Our approach is complementary to such approaches because
it reduces the likelihood of successive timeouts by proactively
desynchronizing transmissions.

The third category of schemes use a new transport protocol.
For instance, ICTCP [7] uses receiver-based flow control to
mitigate incast and DCTCP [6] maintains small queues by
using an aggressive AQM at the switches. Facebook employs
application layer flow control over UDP [4]. While these
approaches improve performance, they are hard to deploy in
public clouds because the operators do not have control over
the end-host stack running in a VM [1], [13].

Finally, one could use Ethernet flow control, however, it
does not work well if multiple switches exist between a sender
and receiver [9].

III. TCP INCAST CONGESTION

In this section, we present a study of TCP incast congestion
and highlight the benefits of RTO randomization.

A. TCP RTO Estimation

TCP maintains a smoothed estimate of the RTT and sets the
retransmission timeout value as follows:

RTO = SRTT + (4× RTTVAR) (1)

where SRTT is the smoothed RTT and RTTVAR is the
linear deviation. There are two factors that place a lower
bound on the RTO value used by TCP flows: (a) minimum
retransmission timeout (RTOmin) and (b) granularity of RTT
measurement. Most implementations track RTTs at a granu-
larity of 1ms or larger.

Fig. 2. Number of packets experiencing timeouts as a function of the number
of senders in a task. The bars show the number of successive timeouts.

Fig. 3. Number of packets experiencing timeouts as a function of the number
of senders in a task. There were two long-lived TCP flows in the background
that represents 75th percentile multiplexing in datacenter networks [6].

After each successive timeout, TCP applies an exponential
backoff algorithm to the RTO as follows:

timeout = RTO × 2b (2)

where b ≥ 1 is the number of successive timeouts. Whenever
an acknowledgement packet is received, the backoff parameter
b is reset to zero.

B. TCP Timeouts under Incast Congestion

We now present a study of incast congestion and show how
it leads to TCP timeouts and degrades goodput.

Experimental Setup: We conduct our evaluation using ns2
simulations on a single-rooted tree, a commonly used topology
for representing a rack where a rack contains multiple servers
that are interconnected by a ToR switch within a datacenter
(see Figure 1) [1], [12]. The round-trip propagation delay
is set to 100µs and each server has a 1 Gbps interface and
uses a packet size of 1 KB. We configure the switch buffers
with a size of 32 KB for every port as done in [2]. Our
custom built application issues a request for a block of data
(with size Bs bytes) that is striped across N servers. Each
server responds with Bs/N bytes of data. This resembles the
communication patterns found in applications such as web
search and MapReduce. To account for real world end-system
scheduling delays, we add a random jitter in the arrival of
server responses from the interval [0, 20]µs picked uniformly
at random. We use TCP SACK with drop-tail queues unless
specified otherwise. RTOmin is set to 10 ms as suggested in
[2], [11], [12]. Each experiment is run fifty times and we report
the average goodput over the entire duration of the transfer.

Figure 3 shows the number of packets that experience
timeouts as a function of the number of senders. Observe
that the number of packets undergoing successive timeouts
increases with the number of senders. For example, when

Goodput/Senders 4 8 16 32 64 128 256
No long flows 547 592 557 323 173 26.9 3.3
2 long flows 274 202 177 75.9 16.2 0.04 0.01

TABLE I
Task goodput (in Mbps) as a function of the number of senders with and

without background flows (RTOmin=10ms).

there are 128 senders, ∼35 packets experience 3 successive
timeouts and this number increases to ∼50 for 256 senders
(and in addition, many flows now experience more than 3
successive timeouts). This happens because increasing the
number of senders increases the number of packets that arrive
synchronously at a switch, leading to more packet drops and
TCP timeouts. This effect gets exacerbated because hosts use
the same value for RTOmin and hence for RTO (a phenomena
we term as RTO synchronization). Consequently, flows that
go into timeout, are likely to have synchronized arrivals of
retransmitted packets. This increases the chances of successive
timeouts and thus degrades goodput as shown in Table I.

We now add two long TCP flows in the background as this
represents 75th percentile multiplexing in datacenter networks
[6]. Observe that successive timeouts increase considerably
with the addition of background flows as shown in Figure 3.
For example, when there are 128 senders, now ∼25 packets
experience more than 10 successive timeouts and this number
increases to ∼130 for 256 senders. This happens because the
long TCP flows keep high queue occupancy, which reduces
the available buffer space for incast flows, thereby degrading
the task goodput (see Table I).

IV. MITIGATING INCAST: RANDOMIZING RTO

We now analyze the effectiveness of RTO randomization in
mitigating incast congestion by reducing successive TCP time-
outs and thus, leading to higher task goodputs. In particular,
we show that there exists a tradeoff between the length of the
randomization interval and the number of senders involved in
incast congestion scenarios. Next, we propose algorithms for
dynamically adapting the randomization interval.

A. Impact of the Randomization Interval

When randomizing the RTO of senders, a key design
decision is the choice of the length of the interval from which
the random RTO values are picked. A large interval provides
greater degree of RTO desynchronization but can increase the
completion time of some flows (those who happen to pick a

large RTO). While a small interval ensures that no flow picks
a large RTO, it reduces the degree of desynchronization.

When a timeout occurs, there are two possible cases which
impact the value of the RTO picked:

• Case 1: If a flow does not receive RTT samples before a
loss occurs, then the flow uses RTOmin as the RTO.

• Case 2: If a flow receives RTT samples before a loss
occurs, then the timeout is set to the larger of RTOmin

and the value determined by Equation 1.

The RTTs in datacenter networks are usually less than 1 ms.
They are even smaller within a single rack (typically less than
0.1 ms [8]). On the other hand, existing operating systems track

Fig. 4. Comparison of E[X] under simulations and analysis (i.e., obtained
via Equation 6) across a range of senders involved in an application task. The
RTOmin=10 ms and ∆=4 ms, thus the maximum value of RTOmin is 12.

RTTs at the granularity of at least 1 ms. Thus, RTO is almost
always set to RTOmin as also indicated by previous works [2],
[7], [9].

Therefore, to desynchronize RTOs of different senders, we
randomize RTO as follows:

RTO = U(RTOmin −∆/2, RTOmin +∆/2) (3)

where ∆ is the length of the randomization interval and
U(a, b) is a function which returns a value uniformly at
random from the interval [a, b]. There are two key observations
about the above equation: (i) the average value of the interval
is RTOmin irrespective of its length. This is important to
ensure fair comparison when changing the interval length and
(ii) increasing the interval length can cause some flows to pick
small RTO values (e.g., close to RTOmin −∆/2) and some
flows to pick large values (e.g., close to RTOmin + ∆/2)
given sufficiently large number of senders/flows involved in
an application task.

1) Analysis: Suppose there are N senders in a task under-
going an ensuing incast. Let Xi be a uniform random variable
representing the value of RTO picked by sender i and let
X = max(X1, X2, .. , XN) be the maximum RTO across the
N senders. The sender which happens to pick the maximum
RTO will wait the longest before retransmitting the packet. As
each sender picks the RTO independently of other senders, the
probability that X exceeds k is given by2

P (X > k) = 1−

[

k − (RTOmin −∆/2)

∆

]N

. (4)

Observe that as the number of senders increases, the proba-
bility that X exceeds k increases exponentially.

Let a = (RTOmin−∆/2) and b = (RTOmin+∆/2), then
the expected value of X is given by

E[X] =

∫ b

a

x×
N(x−RTOmin +∆/2)N−1

∆N
dx (5)

= RTOmin +
∆(N − 1)

2(N + 1)
. (6)

Observe that when N = 1, E[X] = RTOmin as expected.
However, as N increases, the ratio (N−1)/(N+1) converges
to 1 and therefore, E[X] approaches RTOmin+∆/2, thereby
leading to greater degree of synchronization for retransmitted
packets (see Figure 4).

2We ignore successive timeouts in this expression.

Fig. 5. Goodput as a function of the length of the randomization interval.
Note that there are no background TCP flows in these experiments.

Fig. 6. Goodput as a function of the (randomization) interval length. In these
experiments, there are two long-lived TCP flows in the background.

Interestingly, using a large ∆ (for a fixed N) also increases
the variance of X as

V ar(X) =
2∆2

(N + 1)(N + 2)
−

∆2

(N + 1)2
≤

∆2

(N + 1)2
. (7)

Thus, while a larger value of ∆ can lead to greater desyn-
chronization across senders, it may also increase performance
variability especially for smaller values of N .

2) Evaluation: Using the same experimental setup as de-
scribed in Section III-B, we now carry out ns2 simulations to
quantify the tradeoff between the length of the randomization
interval and the number of senders. Figure 5 shows goodput as
a function of the number of senders across different interval
lengths. Observe that for small number of senders (e.g., 4,
8, and 16), the goodput decreases when the interval length
becomes greater than or equal to 8 ms. This happens because
in such cases senders experience relatively small number of
timeouts (see Figure 2) and picking a large RTO unnecessarily
increases the task duration and thus decreases goodput. When
there are 32 senders, goodput first increases with the interval
length because of higher degree of desynchronization enabled
by a large interval, however, beyond a certain value, increasing
the interval unnecessarily delays the task resulting in loss of
goodput. For larger number of senders (e.g., 64, 128, 256),
increasing the interval provided substantial improvement in
throughput. For instance, using a interval of 16 ms improves
goodput for 256 senders by more than 150x.

Impact of Background Flows: We now maintain two long
TCP flows in the background and generate a task as before.
These long flows maintain high buffer occupancy which re-
duces the ability of the buffer to absorb synchronous packet
bursts. Figure 6 shows the goodput as a function of the
number of senders. Observe that in several cases (and unlike
previously), using the largest randomization interval provides
the most significant improvements in goodput.

These results show that while randomization can improve
goodput, the improvement depends on the number of senders
and the randomization interval. Thus, no one randomization
interval is optimal for all number of senders. This motivates the
need for the dynamic adaptation of the randomization interval.

B. Dynamic Adaptation of Randomization Intervals

In the previous section, we showed that a small interval
improves goodput when the number of senders N is small but
results in goodput degradation for large N . On the other hand,
a large interval improves goodput for large N but degrades
goodput otherwise. Towards this end, we propose algorithms
for the dynamic adaptation of the randomization interval.

(a) Timeout-Driven Adaptation (TDA): In this approach,
each sender picks a RTO value uniformly at random from
an interval and on each successive timeout, exponentially
increases the randomization interval. A similar approach is
employed in randomized backoff protocols in IEEE 802.11
based wireless networks for collision avoidance. This approach
is based on the observation that as the number of senders
increases, the likelihood of successive timeouts also increases.
Thus, we adapt the RTO as follows:

RTO = U

(

RTOmin −
ωs∆

2
, RTOmin +

ωs∆

2

)

(8)

where ∆ is the initial length of the randomization interval, ω
is the factor by which ∆ is increased on every successive
timeout, and s ∈ {1, 2, 3, ...,M} denotes the number of
successive timeout. For example, if ω = 2 then on the third
consecutive timeout (i.e., s = 3), the randomization interval
would be 23 ×∆. Note that the choice of the initial ∆ would
depend on the number of packets that can be transmitted within
the interval e.g., if the packet transmission time is 10µs then
100 packets can be transmitted when ∆ = 1ms.

(b) Multiplexing-Aware Adaptation (MAA): In this ap-
proach, each sender is aware of the number of senders N
(i.e., level of multiplexing) that are part of an application task.
Thus, each sender uses a common function f(N) to pick a
randomization interval based on the knowledge of N i.e., a
small interval for small N and a large interval when N is large.
While determining an optimal function is beyond the scope of
this work, insights drawn from our evaluation suggest that a

sub-linear function is suitable e.g., f(N,σ) =
⌊

N
σlogN

⌋

, where

σ is a parameter that controls the aggressiveness of growing
the randomization interval with increase in N .

(c) Flow-Size Aware Adaptation (FSA): Under incast con-
gestion scenarios, the presence of long flows increases the
chances of successive timeouts as they reduce the ability
of switch buffers to absorb packet bursts. With FSA, the
randomization interval is adapted based on flow sizes i.e.,
long flows pick a larger interval (e.g., by using TDA with
ω = 4) compared to short flows (e.g., by using TDA with
ω = 3). This is beneficial for two reasons: (a) it reduces the
buffer occupancy due to long flows’ packets, which helps in
reducing timeouts for the incast flows and (b) it reduces the

Fig. 7. Goodput of an application task under TDA and MAA in the absence
of background flows for senders ranging from 4 to 256.

Fig. 8. Goodput of an application task under TDA and MAA in the presence
of two long-lived TCP flows for senders ranging from 4 to 256.

level of multiplexing at the link, which helps short flows to
attain higher throughput.

V. EVALUATION

We now evaluate the impact of RTO randomization and the
proposed algorithms using extensive packet-level ns2 simula-
tions. We have implemented all the algorithms in ns2. First,
we evaluate the performance of the proposed algorithms under
incast congestion scenarios for varying number of senders
using the same experimental as described in Section III-B.
Finally, we evaluate the proposed solution under non-incast
scenarios for a range of network loads. Each data point
represents the average of twenty runs.

A. RTO Adaptation Algorithms

1) TDA and MAA: Figure 7 shows the goodput of the
application task for TDA and MAA for different number of
senders. Observe that randomization (for both TDA and MAA)
provides substantial improvement in goodput when the number
of senders are more than 64. For example, TDA improves by
∼1.5x, ∼4x, and ∼32x when the number of senders are 64,
128, and 256, respectively. This happens because in the case
of timeouts, TDA increases the backoff interval exponentially,
which helps in desynchronizing retransmissions and thereby
improves goodput. MAA provides the most improvement in
goodput. In particular, it improves goodput by ∼1.8x, ∼3.4x,
∼8.7x, and ∼44x for 32, 64, 128, and 256 senders. This
happens because MAA keeps track of the active number of
senders at all times. Thus, it is able to effectively prevent many
timeouts. This is unlike TDA, which is a reactive approach.

Impact of Background Flows: We now introduce two back-
ground TCP flows [6]. Figures 8 and 9 show the goodput
and the average number of timeouts/packet, respectively, for

Fig. 9. Average number of timeouts per packet for different schemes (with
two long-lived flows in the background).

Fig. 10. Goodput of an application task under TDA and FSA in the presence
of two long-lived TCP flows for senders ranging from 4 to 256.

different schemes. Observe that randomization provides sub-
stantial goodput improvement across a range of senders. For
example, under TDA (ω = 2), goodput improves by ∼2.8x-
11x for senders in the range 4-64 and by more ∼629x for 128
and 256 senders. Under MAA, the goodput improvement is
less than under TDA when the number of senders are 64 or
less. This happens because the presence of two background
flows increases timeouts significantly (see Figure 3) but MAA
does not react to these timeouts as it treats all flows alike
(whether short or long). However, for large number of senders,
it provides goodput improvement that is comparable to or
better than TDA. This happens because MAA picks a very
large randomization interval (due to large number of senders)
and dynamically reduces it when flows depart the network.

2) FSA: Long flows and short flows impact network con-
gestion differently. Long TCP flows are able to saturate the
network and tend to dominate the buffer space. As a result,
they have a greater impact on application performance. Thus, it
is useful to penalize these flows more than the relatively short
flows of applications tasks when congestion occurs. Figure 10
shows the goodput under FSA for different number of senders.
Observe that FSA can be better than TDA in many scenarios.

B. Non-incast Scenario

We now evaluate the impact of RTO randomization on
non-incast scenarios, where flows do not necessarily arrive
synchronously. Such scenarios are also fairly common in
datacenter networks [1], [11]. To emulate such a scenario, we
generate short query traffic with flow sizes drawn from from
the interval [10 KB, 50 KB] using a uniform distribution. These
flows arrive according to a Poisson process as done in prior
works [11], [12]. We also generate two long-lived TCP flows
in the background. The resulting workload resembles that of
web search as reported in a prior study [6].

Figure 11 shows the average flow completion time (AFCT)
of short (or mice) flows as a function of the their offered load.
Observe that TDA results in similar AFCTs across a range of
offered loads. In fact, at high loads (≥ 80%) TDA improves

Fig. 11. Average flow completion times (AFCT) as a function of mice load.
We maintain two long TCP flows in the background.

AFCTs by ∼9%. This happens because at high loads, large
number of short flows are simultaneously active and incur
timeouts. TDA randomization actually reduces the level of
multiplexing by delaying retransmissions from some flows,
thus helping flows to complete faster.

VI. CONCLUSION

In this paper, we studied the efficacy of RTO randomization
in mitigating incast congestion. We showed that the ideal
randomization interval depends on the number of senders
involved in incast and the flow sizes. Towards this end,
we proposed three algorithms that dynamically adapt the
randomization interval based on various metrics including
successive timeouts, level of flow multiplexing, and the size
of flows. These algorithms substantially improve goodput and
can be easily deployed without requiring changes in switches
or applications.

REFERENCES

[1] D. Abts and B. Felderman, “A guided tour of data-center networking,”
Commun. ACM, vol. 55, no. 6, pp. 44–51, Jun. 2012.

[2] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. Andersen,
G. Ganger, G. Gibson, and B. Mueller, “Safe and effective fine-grained
tcp retransmissions for datacenter communication,” in SIGCOMM’09.

[3] V. Jalaparti, P. Bodik, S. Kandula, I. Menache, M. Rybalkin, and
C. Yan, “Speeding up distributed request-response workflows,” in SIG-
COMM’13.

[4] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C.
Li, R. McElroy, M. Paleczny, D. Peek, P. Saab, and et al., “Scaling
memcache at facebook,” in NSDI’13.

[5] G. Ananthanarayanan, S. Kandula, A. G. Greenberg, I. Stoica, Y. Lu,
B. Saha, and E. Harris, “Reining in the outliers in map-reduce clusters
using mantri,” in OSDI’10.

[6] M. Alizadeh, A. Greenberg, D. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan, “Data center tcp (dctcp),” in
SIGCOMM’10.

[7] H. Wu, Z. Feng, C. Guo, and Y. Zhang, “Ictcp: Incast congestion control
for tcp in data center networks,” in Co-NEXT’10.

[8] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar,
and S. Shenker, “pfabric: Minimal near-optimal datacenter transport,” in
SIGCOMM’13.

[9] J. Zhang, F. Ren, and C. Lin, “Modeling and understanding tcp incast
in data center networks,” in INFOCOM’11.

[10] “IEEE Standard for local and metropolitan area networks part 11;
amendment 5: Enhancements for higher throughput,” 2009, 802.11n.

[11] A. Munir, I. A. Qazi, Z. A. Uzmi, A. Mushtaq, S. N. Ismail, M. S. Iqbal,
and B. Khan, “Minimizing Flow Completion Times in Data Centers,”
in INFOCOM’13.

[12] C.-Y. Hong, M. Caesar, and P. B. Godfrey, “Finishing flows quickly with
preemptive scheduling,” in SIGCOMM’12.

[13] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu,
A. Fingerhut, V. T. Lam, F. Matus, R. Pan, N. Yadav, and G. Varghese,
“Conga: Distributed congestion-aware load balancing for datacenters,”
in SIGCOMM’14.

View publication statsView publication stats

https://www.researchgate.net/publication/304415678

