Incentivizing Censorship Measurements via Circumvention

Internet censorship is pervasive!

- Over 70 countries restrict Internet access
 - Often due to political, social, or economic reasons

Censorship has a substantial impact

- ... on different stakeholders in the Internet ecosystem

It has led to the design of censorship...

Measurement Systems

- What is blocked?
- Where is it blocked?
- How is it blocked?
- When it is blocked?

... CensMon, Iris, Augur, Encore

Circumvention Systems

How do we bypass censorship?

Current practice and limitations

Existing measurement and circumvention systems are designed independently

- Circumvention systems are not data-driven
 - … leads to one-size-fits-all solutions!
- Censorship measurement systems lack incentives
 - ... limits availability of geographically distributed probe points

In this work we ask, "Can we address the limitations of individual systems by consolidating them in a single platform?"

C-Saw in 1-slide

- Consolidates measurements and circumvention
 - Uses crowdsourcing to gather censorship measurements
 - Offers data-driven circumvention
- Better circumvention performance incentivizes more users to opt-in

- Web Censorship & Circumvention
- C-Saw Design
- Evaluation
- Deployment

- Web Censorship & Circumvention
- C-Saw Design
- Evaluation
- Deployment

Web censorship techniques

- Web filtering can be performed by intercepting a user request at different levels of the protocol stack

- 1 DNS blocking
- 2 IP Blocking
- 3 HTTP blocking
- 4 HTTPS blocking

Circumvention approaches

- Public DNS Servers
- Domain Fronting
- VPNs
- Tor
- Lantern
- ... others

Circumvention: local fix vs relay-based

What are the opportunities for improving circumvention performance?

A censorship case study in Pakistan

- Measurements taken from different vantage points
 - University campus (Lahore)
 - Served by ISP-A and ISP-B
 - Home users (Karachi)
 - Served by ISP-B only

A censorship case study in Pakistan

(1) Insights about censors

- Blocking mechanisms can differ across ISPs
- Blocking mechanisms can differ across URLs even within an ISP

Insights hold across several countries

(2) Circumvention insights - 1/2

Fetched:

YouTube homepage **200** runs

ISP-B:

Blocking: HTTP & HTTPS HTTPS/DF

Measurement point:

Campus network

longer PLTs than the local fix

(2) Circumvention insights - 2/2

Fetched:

YouTube homepage 200 runs

ISP-A:

HTTP Blocking Only HTTPS

Measurement point:

Campus network
Tor exit relay shown

(2) Circumvention insights - 2/2

Fetched:

YouTube homepage 200 runs

-Canada

Page Load Time (ms)

Measurement point:

Campus network
Tor exit relay shown

Key implication for design

Measurements reveal differences in blocking mechanisms

Can pick the least overhead circumvention strategy

- Web Censorship & Circumvention
- C-Saw Design
- Evaluation
- Deployment

- Web Censorship & Circumvention
- C-Saw Design
- Evaluation
- Deployment

Design goals

- Scalable measurements with user consent
- 2 Adaptive circumvention
- In addition, a practical and usable solution should
 - require no target lists
 - preserve privacy of users contributing measurements

How C-Saw meets these goals?

- Scalable measurements with user consent
 - C-Saw offers small PLTs as an incentive
 - It only measures those URLs that a user actually visits
 - As a result, it requires no target lists!

- 2 Adaptive circumvention
 - C-Saw measures the blocking mechanism used by a censor
 - Selects the least overhead circumvention strategy

C-Saw components

C-Saw components

C-Saw components

C-Saw proxy

- Measurement module
 - Runs a censorship detection algorithm
 - Issues redundant requests
 - Achieves resilience to false reports

- Circumvention module

 Selects a circumvention approach (e.g., Public DNS, Domain Fronting, or Tor)

C-Saw Big Picture

Security and privacy considerations

- Interference with C-Saw measurements
 - Rate limits creation of fake IDs and uses a voting mechanism
- Blocking access to the measurement infrastructure
 - One can use Tor hidden services
- User privacy and resilience to detection
 - All measurement reports are carried over the Tor network

- Web Censorship & Circumvention
- C-Saw Design
- Evaluation
- Deployment

- Web Censorship & Circumvention
- C-Saw Design
- Evaluation
- Deployment

Evaluation

- We implemented C-Saw using GitHub's electron framework
 - Measures common forms of censorship
 - Implements several local fixes and optimizations
 - Supports Tor and Lantern as relay-based circumvention approaches
- Evaluation
 - Macro-benchmarks: C-Saw with Tor and Lantern
 - Micro-benchmarks: Impact of redundant requests, URL aggregation

Page Load Times with C-Saw

DNS Blocked Webpage

Unblocked Webpage

- Web Censorship & Circumvention
- C-Saw Design
- Evaluation
- Deployment

- Web Censorship & Circumvention
- C-Saw Design
- Evaluation
- Deployment

Deployment study

- We released C-Saw to 123 consenting users (3-month measurements)
 - Residential, Enterprise, and University network users in Pakistan
 - Users were carefully informed about C-Saw
 - ... but were not given any list of blocked websites they needed to visit
- Insights
 - Users visited 420 blocked domains accessed through 16 different ASes
 - For majority of URLs, a block page was returned followed by DNS blocking
 - We found blocking of CDN servers

C-Saw in the wild

Business FOLLOW MASHABLE >

News channels go off air, Facebook and YouTube blocked in parts of Pakistan

Javed Hussain | Updated November 25, 2017

IMAGE: AFP/GETTY IMAGES

- Twitter was found blocked at 13:32 on Nov 25, 2017 from AS 17557 (Response: HTTP_GET_BLOCKPAGE)
- Instagram was found blocked at 4:51 on Nov 26, 2017 from AS 38193 (Response: DNS blocking)
- Instagram was found blocked at 9:06 on Nov 26, 2017 from AS 59257 (Response: DNS blocking)
- Instagram was found blocked at 9:31 on Nov 26, 2017 from AS 45773 (Response: DNS blocking)

Limitations and discussion

- Scope of measurements
 - Difficult to measure unpopular websites or censorship at specific times
- Robustness of C-Saw
 - Relies on Tor as one possible circumvention strategy
 - Arms race between Tor and some censors (e.g., China)
 - New circumvention approaches can be easily incorporated in C-Saw
- Non-Web filtering

Summary

- Censorship Measurements
 - C-Saw uses crowdsourcing to collect measurements
- Circumvention Performance
 - Censorship measurements enable adaptive circumvention
 - Small PLTs incentivize users to opt-in

Circumvent

Analyze & Learn

Crowdsource & Measure

