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Abstract

Many smart home frameworks use applications to automate devices

in a smart home. When these applications interact in the same

environment, they may cause unintended actions which can lead

to a safety violation (e.g., the door is unlocked when the user is

not at home). While recent efforts have attempted to address this

problem, they do not capture complex app behaviors such as: 1)

timed behavior and user inputs (e.g., a door can remain unlocked for

a long time because of a lock-door app that locks the door after 𝑥
duration, if 𝑥 is set too large.) and 2) interactions between devices
and the environment they implicitly affect (e.g., water sprinklers

cannot be turned on if the water supply is off). Hence, prior work

leads to many false positives and false negatives. In this paper,

we present PSA, a practical framework to identify safety intent

violations in a smart home. PSA uses parameterized timed automata

(PTA) as an expressive abstraction to model smart apps. To parse

these apps into PTA, we define mappings from smart app APIs

to equivalent PTA primitives. We also provide toolkits to model

devices, environments, and their interactions. We evaluate PSA on

86 apps in the Samsung SmartThings IoT ecosystem. We compare

PSA against two state-of-the-art baselines and find: (a) 19 new

intent violations and (b) 35% fewer false positives than baselines.
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1 Introduction

With the surge in IoT devices, several smart home platforms have

emerged; e.g., Samsung SmartThings [34], IFTTT [20], which allow

users to control devices using apps. Unfortunately, these apps can

cause safety violations when they interact directly or because of

shared environmental context. Apps can also be incorrectly config-

ured by users, leading to unsafe situations; e.g., in Figure 1, if the

user sets a large value of 𝑥 , the door will remain unlocked for a long
time. Recent work attempts to detect such violations in IoT ecosys-

tems either statically [8, 9, 11, 23, 31, 37, 40] or dynamically[10, 38].

However, these efforts are not expressive enough to capture the

following features of modern smart apps and IoT ecosystems:

1. Timing: Consider the interactions of real SmartThings apps in

Figure 1. The unlock-when-arrive app unlocks the door when

the user arrives. After the user enters and closes the door, auto-

lock-door app is triggered, which waits for x min and then locks

the door. If we do not model the𝑤𝑎𝑖𝑡 , it is not a safety violation
because the door is locked after unlocking. However, it is a safety

violation if 𝑥 is large. Existing efforts ( [9, 11, 23, 37]) either ignore
timing or only model it coarsely, resulting in inaccuracies.

2. User Inputs: Apps can be customized by users, e.g., the auto-lock-

door app in Figure 1 takes input 𝑥 . These inputs often determine
if an app is safe. However, existing techniques ( [8, 9, 23, 30, 31,

37, 40]) do not reason about the safe range of user inputs.

Figure 1: A violation that exists only if the value of x is large.
3. State: Apps can maintain state (discrete value or time), e.g., con-

sider an app that turns off an A/C if it has already run for 2 hours.

The app tracks when the A/C was run by keeping state. Unfortu-

nately, prior works either consider stateless apps ( [8, 23, 37, 40])

or capture discrete state only ( [9, 11]), while failing to capture

continuous state resulting in false positives or negatives.

4. Environment Interaction: Apps may interact indirectly because of

shared environment and devices. For example, if an app turns the

main water valve off when a leak is detected, another app cannot

turn water sprinklers on. We need to model this interaction to

detect that sprinklers cannot be run. Existing efforts ( [8, 9, 11, 30,

31, 40]) either miss or only partially capture these interactions

resulting in false negatives or false positives.

To overcome the limitations of prior work, we present PSA. 1

PSA uses model-checking to verify a smart home deployment for

safety violations. It uses static instead of runtime analysis which

allows PSA to detect violations before they occur. PSA takes as input

a set of apps deployed in a home (with their source code) and a set

of safety properties or 𝑖𝑛𝑡𝑒𝑛𝑡𝑠 which check if an app does anything
unintended. It then confirms whether the apps satisfy these intents

or provide counterexamples when they do not.

In designing PSA, we need an expressive abstraction to model

the stateful and timed behavior of smart apps, and their interaction

with the devices and the environment. Hence, we explore the ab-

stractions proposed in the model-checking literature [3, 13, 21, 35].

We focus on literature in the cyber-physical systems (CPS) since

CPS have an additional notion of environment interactions which

differentiate it from verification in software systems. We identify

parameterized timed automata (PTA) as a suitable abstraction. Next,

it is hard to translate the apps correctly into PTA, as there is no one-

to-one mapping between apps and PTA. We carefully define these

app to PTA mappings and verify our generated PTA for correctness

by emulating an app in SmartThings, and comparing the output

trace with its PTA. We also define a taxonomy for environment

attributes and sensor devices, and provide templates to model each

category of devices and environment attributes into PTA in the con-

text of smart home. Moreover, we define a mapping of interactions

between device actions and environment attributes by building a

device-environment library. We describe these in Section 5 and 6.

In this paper, we make the following contributions:

• We identify PTA as the expressive and appropriate abstraction

to model modern smart apps. We define a mapping between

various smart app APIs into equivalent PTA primitives such that

it is correct and efficient. Finally, we design and implement a

parser to generate formal models of apps from source code.

1The name PSA stands for Proactive Safety for smart home Applications, which is also
a play on Public Safety Announcements for Smart Homes.
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(a) (b)

Figure 2: An overview of the Smart Home Ecosystem (a) and a logi-

cal workflow between different components of this smart home (b).

Figure 3: Trigger-action programming (Stateless, Stateful).

• We develop a systematic methodology to model devices, environ-

ment, and intents for smart homes. We design heuristics to make

the model-checking more tractable. For instance, we discretize

continuous inputs e.g., temperature. We model the environment

effects qualitatively and not quantitatively and, use taint-tracking

to minimize the number of variables while parsing the apps.

• We run PSA on 86 SmartThings apps and find 640 intent viola-

tions. We also find that 23% of these violations can be avoided

when configured using the safe values output by PSA.

• We show that PSA has no false positives or false negatives (when

our analysis terminates). We also compare our system against

two baseline modeling approaches [9, 23], 2 and show that PSA

leads to 35% less false positives and finds 19 new violations.

2 Background and Motivation

We begin with a background on modern smart home ecosystems.

Then, we give a taxonomy of safety intent violations and discuss

the limitations of prior work.

2.1 Smart Home Ecosystem

Smart home platforms, such as SmartThings [34] (Figure 2a), usually

comprise a cloud-connected hub to control the IoT devices. Users

interact with IoT devices in their home using smart apps, from

the provider’s [33] or third-party app store [7]. Figure 2b shows a

logical view of a smart home. Changes in the environment influence

the sensor devices (e.g., temperature influences thermostat reading).

The sensor devices trigger apps, which actuate on devices, affecting

the environment (e.g., A/C.on() to decrease temperature).

Smart Apps: Smart apps have event-driven programming, also

called trigger-action programming (TAP). There are two types of

TAP paradigms for smart apps (Figure 3): 1) Stateless-TAP apps

(e.g., IFTTT [20], Zapier [39]), which have stateless event handlers

(e.g., turn lights on when there is motion), 2) Stateful-TAP apps (e.g.,

SmartThings [34], Hubitat [19]), which preserve the context across

executions, such as counting the frequency of an event. These smart

apps can also schedule actions and keep timers (e.g., turn A/C off

after 30min). Stateful-TAP is a super-set of Stateless-TAP apps. In

this work, we consider Stateful-TAP apps, focusing on Samsung

SmartThings [34] since it is widely used. However, our techniques

also apply to other platforms (e.g., IFTTT [20], Hubitat [19]).

2These baselines are approximations of prior work.

1 preferences {

2 input "AC", "capability.switch", input "threshold", "Number"

3 input "TH", "capability.thermostat", input "d", "time"}

4 def installed () {

5 subscribe(TH, "temperature", handler) }

6 def handler(evt) {

7 if (evt.value < threshold) {

8 AC.off()

9 runIn (60 * d, func}}

10 def func() { AC.on() }

Figure 4: Example SmartThings application which turns A/C off
for duration d when temperature is below a threshold.

Smart apps are also configurable; users can set app parameters

e.g. temperature threshold x for switching on A/C. Figure 4 shows

an example smart app that turns A/C off for duration minutes when

the temperature drops below a threshold. The preferences section

(line 1-5) specifies inputs which are configured by the user at install

time. In this example, the user needs to select an A/C, a thermostat,

a temperature threshold, and the duration. The app subscribes to

events in the installed section (line 6-7) at the install time. Each

subscribed event has a handler which is triggered when the event

takes place. This example also highlights the timed behavior in

apps. We discuss the detailed features of smart apps in Section 5.

2.2 Safety Violations in Smart Home

Wefirst present a taxonomy of intent violations that we use through-

out the paper. It captures all the safety violations proposed in the

prior work [9, 23, 31, 37], as well as novel extensions to incorporate

the effects of timed behavior. To define the violations, we introduce

some notation. Let 𝑎𝑑,1,𝑎𝑑,2,...,𝑎𝑑,𝑛 be the list of actions that can be
performed on device 𝑑 . For example, for an air-conditioner (A/C)
the actions can be A/C.on() or A/C.off(). Let 𝑡𝑎𝑑,1 be the time when
action 𝑎𝑑,1 on device 𝑑 happened. Let 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝑠𝑑 ) be a boolean
operation defined on device state 𝑠𝑑 of device 𝑑 e.g., a condition

defined on the A/C state can be: if A/C is on. Let 𝑒𝑘𝑚 be the 𝑚𝑡ℎ

state of environment attribute 𝑒𝑘 e.g., the A/C.on() action affects
the environment attribute “temperature”.

P1 Conflicting Actions: Consider the following two interactions:

𝑡ℎ𝑒𝑟𝑚𝑜𝑠𝑡𝑎𝑡_𝑟𝑒𝑎𝑑𝑖𝑛𝑔 > 75𝐹 → 𝑤𝑖𝑛𝑑𝑜𝑤𝑠.𝑜𝑝𝑒𝑛()

𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒_𝑠𝑒𝑛𝑠𝑜𝑟 .𝑎𝑏𝑠𝑒𝑛𝑡 → 𝑤𝑖𝑛𝑑𝑜𝑤𝑠.𝑐𝑙𝑜𝑠𝑒 ()

Here, the two interactions lead to conflicting actions. Conflicting

actions can be of two types:

P1.1 Device Conflicts: Conflicting actions happening on the same

device are device conflicts. Formally, the following interactions be-

tween sensor events and actuator actions result in device conflicts:

𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝑠𝑑1 ) → 𝑎𝑑2,1 (1) 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝑠𝑑3 ) → 𝑎𝑑2,2 (2)

𝑤ℎ𝑒𝑟𝑒 𝑎𝑑2,1 ≠ 𝑎𝑑2,2 𝑎𝑛𝑑 |𝑡𝑎𝑑2,1−𝑡𝑎𝑑2,2 | ≤ 𝑥 ;𝑥 𝑖𝑠 𝑠𝑜𝑚𝑒 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛

P1.2 EnvironmentConflicts:These occurwhen app actions cause

conflicting effects on the same environment attribute. Formally:

𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝑠𝑑1 ) → 𝑎𝑑2, → 𝑒𝑘1 (1) 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝑠𝑑3 ) → 𝑎𝑑4, → 𝑒𝑘2 (2)

𝑤ℎ𝑒𝑟𝑒 𝑒𝑘1 ≠ 𝑒𝑘2 , 𝑑2 ≠ 𝑑4 𝑎𝑛𝑑 |𝑡𝑎𝑑2, − 𝑡𝑎𝑑4, | ≤ 𝑥 ;𝑥 𝑖𝑠 𝑠𝑜𝑚𝑒 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛

For example, one app turns on a heater causing the temperature to

increase and another app turns on an A/C causing it to decrease.

P2 Co-occurrence Violation: Certain device states and actions

should always co-occur. For example, when no one is in the house,
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User
Config

State
Env.
Model.

Time
Model.

Intent
Vio.

Prog.
Paradigm

SiFT [23] � � �* event P1,2,4 Stateless
Soteria [9] � discrete � � P1.1,2 Stateful
IoTSan [31] � � � � P1.1,2 Stateful
Iota [30] � � � � P1.1,2 Stateful
HomeGuard [11] � discrete � � P1.1,2 Stateful
iRuler [37] � � � event P1,2,4 Stateless
AutoTap [40] � � � � P1.1,2,3 Stateless
Menshen [8] � � � � P1,2 Stateless
Salus [22] � � � event P2 Stateless

PSA � � � � P1-5 Stateful

Table 1: Comparison of PSA with prior work (Vio means violation)

Figure 5: Example of a device conflict that we found. It exists only
if the value of x is small

the door should be locked, presence_sensor .inactive→ 𝑑𝑜𝑜𝑟 .𝑙𝑜𝑐𝑘 ().
Formally, in 𝑠𝑑1 → 𝑎𝑑2,, 𝑎𝑑2, should occur with device state 𝑠𝑑1 . In

𝑒𝑘1 → 𝑎𝑑1,, 𝑎𝑑1, and environment attribute state 𝑒
𝑘
1 should co-occur.

This property checks if the co-occurrence is violated. There can be

a conjunction of multiple device or environment states.

P3 Deadline Violation: Certain actions should be time bound for

user safety. For example, the door should be locked within a min

of being closed (𝑑𝑜𝑜𝑟 .𝑢𝑛𝑙𝑜𝑐𝑘𝑒𝑑 () → 𝑑𝑜𝑜𝑟 .𝑐𝑙𝑜𝑠𝑒 () within 1 min). If
the action is not performed within a given deadline, then it is a

deadline violation. These deadlines are specified on device actions.

More formally, 𝑎𝑑1, → 𝑒𝑣𝑒𝑛𝑡𝑢𝑎𝑙𝑙𝑦 𝑎𝑑2,𝑤𝑖𝑡ℎ𝑖𝑛 𝑥 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛. We can
also have a conjunction of actions on either side.

P4 Blocked Action: Consider the following interaction:

𝑙𝑒𝑎𝑘.𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 → 𝑤𝑎𝑡𝑒𝑟_𝑠𝑢𝑝𝑝𝑙𝑦.𝑜 𝑓 𝑓 ()

𝑓 𝑖𝑟𝑒.𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 → 𝑓 𝑖𝑟𝑒_𝑠𝑝𝑟𝑖𝑛𝑘𝑙𝑒𝑟 .𝑜𝑛()

Here the actionwater_supply.off () blocks the action sprinkler .on().
If an action 𝑎𝑑1, on device𝑑1, makes it impossible to execute another
action 𝑎𝑑2, on device 𝑑2, then 𝑎𝑑2, is a blocked action. More formally,
𝑎𝑑, → 𝑛𝑒𝑣𝑒𝑟 𝑎𝑑′, Here 𝑑1 and 𝑑2 can be the same device.
P5 Invalid Action Sequence: This is a general property to cap-

ture unreasonable, or risky action sequences; e.g., if the duration

between door .close() and door .lock() action is over 3 min, then it
is a risky action sequence. More formally, invalid action sequence

between two actions can be of the form:

(𝑎𝑑,, 𝑡𝑎𝑑, ), ..., (𝑎𝑑′,, 𝑡𝑎𝑑′, ) 𝑤ℎ𝑒𝑟𝑒 |𝑡𝑎𝑑′, − 𝑡𝑎𝑑, | � 𝑥, � = {=, <, >, ≤, ≥,≠}

𝑥 is some duration. Note that P1 and P3 are special cases of P5.

2.3 Comparison with Prior Work

Given this context of apps and violations, we now compare the

existing approaches with our work by looking at the various aspects

of smart home frameworks in Table 1. The columns 1-4 in Table 1

highlight the supported app features. The fifth column highlights

the supported properties mentioned in Section 2.2. The last column

reports the supported programming paradigm for each approach.

User configurable inputs: Apps may have configurable inputs

which often decide whether a configuration is safe. For example,

in Figure 1, the scenario is unsafe only if x is large. Existing tech-

niques [8, 9, 11, 23, 30, 31, 37, 40] do not analyze the apps for poten-

tial safe configurations as they take pre-configured apps. Salus [22]

Figure 6: A blocked action violation that we found, where water

sprinkler cannot turn on because main water supply is off.

gives some insight into safe configurations for the stateless-TAP

apps. But, it cannot be extended to the stateful-TAP apps.

Modeling time: Smart apps exhibit timed behavior (Section 2.1).

Modeling time is important to check for intent violations accurately.

For instance, consider the interaction between actual SmartThings

apps in Figure 5. The camera-power-scheduler app turns on a switch

for charging the camera and the power-allowance app turns it off

after duration 𝑥 . If we do not model the wait after the switch on
action, we will incorrectly mark it as a device conflict, which exists

only if the actions happen together, i.e., when 𝑥 is small. Apps show
timed behavior in twoways: 1) Timed Events which are triggered on

the value of time during the day, e.g., the camera-power-scheduler

app is triggered at 6 pm. 2) Duration, where some time interval is

measured between events and actions, e.g., the power-allowance

app waits for x min before turning off the switch.

SiFT [23], iRuler [37] and Salus [22] model timed events but not

duration as they only consider stateless-TAP apps. Soteria [9] and

HomeGuard [11] consider stateful-TAP apps but ignore their timed

behavior. These approaches will mark the interaction in Figure 5

as a device conflict, even if x has a large value (i.e., a false positive),

and also miss the violation in Figure 1 (i.e., a false negative). Also,

properties having time e.g., P3 cannot be handled by previous work

(e.g., [9, 11, 22, 23, 30, 37]). Other approaches [30, 31] model timed

behavior in apps, but only support untimed properties.

State: Apps can maintain state, which may be a discrete value

or time. For example, consider an app that tracks when the A/C

was last run and turns it off if it has run for 2 hours. Prior work

(SiFT [23], iRuler [37], AutoTap [40], Salus [22] and Menshen [8])

only consider stateless apps and cannot be trivially extended to

handle stateful apps. Soteria [9] and HomeGuard [11] do not model

time and hence can only handle discrete state.

Modeling Environment: Apps may have indirect inter-app inter-

actions when they run in the same environment. For example, in

Figure 6, when the water supply is shut, the sprinklers cannot be

run, causing a blocked action (Property P4). We cannot detect this

blocked action if we do not model the interaction between the water

supply and the sprinklers. To find environment related violations

(e.g., P 1.2), we need to model the interactions between devices (sen-

sors and actuators) and the environment. Existing techniques either

do not model these interactions [9, 11, 30, 31, 40] or only model

interactions between actuators and the environment [8, 22, 23, 37].

Programming Paradigm: Smart apps follow two programming

paradigms, Stateless- and Stateful-TAP (Section 2.1). The latter is

more expressive and enables complex automation e.g., Figure 4.

Most of the prior works ( [8, 22, 23, 37, 40] support stateless-TAP,

which cannot be trivially extended to stateful-TAP apps.

3 System Overview

In this section, we describe PSA (Figure 7) and highlight our design

challenges. PSA uses a model checking approach [12] to verify

whether a smart home deployment (set of apps deployed) satisfies

the specified safety intents. We envision PSA to be used offline by
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Figure 7: A high level overview of PSA.

the smart home vendor (e.g. SmartThings). The vendor will run the

analysis for all possible deployments (set of apps in a house).

PSA needs the source code of the apps like prior work [9, 11,

23, 30, 31]. Users can specify a set of device types as input to PSA.

Otherwise, PSA checks for all available device types. Device type is

a general category of devices such as A/C, heater, and not a specific

instance. PSA has a built-in library of safety intents (Section 2.2).

PSA outputs a counter-example in case of a violation, and a set of

safe configurations of user inputs for the apps. The smart home

vendor can then provide this list of safe configurations to the users

for their home deployments. The main components of PSA are:

• The parser converts an app into a formal model. In particular,

for an app 𝐴𝑖 of a smart home platform, a platform-specific

parser takes the source code of 𝐴𝑖 as input. It then generates

an ensemble of models 𝑀𝑖
1, 𝑀

𝑖
2, ..., 𝑀

𝑖
𝑛 . The number of models

depends on the number of event handlers, and asynchronous

APIs used in the app, as explained in Section 5.2.

• The model generator creates models for the devices and the envi-

ronment by looking at the app models, the safety intents, and

the metadata for the devices and the environment attributes.

It also creates interaction models to map device actions to the

environment, using the device-environment library (Section 6)

e.g., 𝐴/𝐶.𝑜𝑛() → 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒.𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔. For example, con-
sider the violation in Figure 6. The model generator creates the

device model for the water sensor. The environment model will

be for the environment attribute water with states on and off.

The interaction models will map the actions water_supply.off ()
and sprinkler .on() to the model for water. This interaction is
present in the device-environment library. Finally, the intent P4

checks if 𝑠𝑝𝑟𝑖𝑛𝑘𝑙𝑒𝑟 .𝑜𝑛() is issued after water_supply.off ().

• The generated models are then fed to a model checker. In case

of a violation, the model checker outputs a counter-example

as a trace of dated events and actions. PSA also outputs a set

of configurations of input values that do not lead to an intent

violation. This set can aid users to safely configure the apps.

Given this overview, there are a few outstanding questions:

Modeling Abstraction: As motivated earlier (Section 2), we need

to model user inputs, timed behavior of apps, and their interaction

with the environment to detect violations accurately. Modeling

these entails trade-offs between the expressiveness of models, accu-

racy of verification, and performance. For example, we can model

time quantitatively or qualitatively. Similarly, user inputs can be

modeled by enumerating all values or by treating them as symbolic

states. We discuss our choices in Section 4.

App to Model Parsing: Naively translating the apps to our ab-

straction can affect the expressiveness and correctness of PSA. For

example, apps have synchronous and asynchronous functions, local

and global variables, built-in utilities, e.g., find, collect, etc., diverse

data types such as maps, lists, etc., scheduling and unscheduling of

actions. We discuss these challenges and our approach in Section 5.

thermostat_evt?

0 1 2

Sync AC_act
Sync thermostat_evt

Clock c := 0Discrete a
val

:= 1
Discrete t

val
:= 1 Parameter d

c < 60*d
c 60*d  AC_act! a

val
:=1

t
val

 < threshold  AC_act!
a

val
:=0 c:=0

Figure 8: PTA for the app shown in Figure 4

Practical Smart Home Modeling: Besides apps, modeling the

environment and devices is also challenging. For example, contin-

uous environment attributes such as temperature, humidity, can

significantly blow up the state space of models. Moreover, mod-

eling the effects of various device actions on the environment is

challenging as different devices can affect an environment attribute

differently. For example, an A/C.on() and a fan.on() action, both

affect temperature differently. We discuss this in Section 6.

4 Modeling Abstraction

Now we explain our choice of parameterized timed automata (PTA)

as the modeling abstraction to model the smart home components

such as smart apps, devices, environment, and intents.

Choosing the modeling abstraction: Our abstraction should al-

low us to model modern smart app features such as state, time,

and user inputs, and other components of the smart home, such as

devices. We looked at modeling options across three dimensions: 1)

Time, 2) Environment Attributes, and 3) User inputs (Appendix A).

We can model quantitative time either as discrete or continuous.

Modeling time as discrete values would enable using a simple FSM

abstraction. However, to achieve correctness we need to use suf-

ficiently small intervals for discretization, leading to a large state

space. On the other hand, modeling time as a continuous variable

using either a Timed Automata [4], Timed Petri-Nets [32] or using

Hybrid Automata [18] addresses this shortcoming.

While environment attributes are naturally continuous variables,

we observe that they generally have a narrow discrete range of

values in practice. For example, thermostat set-points are usually

set at integer values within a narrow range (e.g. 60F-80F), sound

and motion sensors usually produce a binary output indicating

presence, and carbon-monoxide (CO) sensors need to check CO

levels for particular thresholds. Therefore, we model environment

attributes using discrete instead of a continuous variable. This saves

us from state space explosion without compromising on accuracy.

We can model user inputs by either enumerating over all values

(enumeration), or treating user inputs as symbolic variables/pa-

rameters (parameterization). We adopt parameterization since an

app may have more than one user input leading to exponential

complexity in the possible combinations with enumeration.

The above modeling choices lead us to choose Parameterized

Timed Automata (PTA), where we model time as a continuous

variable and environment attributes as discrete, using the param-

eterized variant of Timed Automata (PTA) to handle user inputs.

Now we give a brief background on parameterized timed automata

(PTA) using the example of the app mentioned in Figure 4.

ParameterizedTimedAutomata:APTA extends a non-deterministic

FSM with a finite set of real-valued clock variables, integer-valued

discrete variables and unknown variables called parameters. A tran-

sition can be synchronized with other PTAs using synchronization

labels (sync). Figure 8 shows the PTA model for the app in Figure 4

with states (𝑆0, 𝑆1 and 𝑆2), a clock 𝑐 , discrete variables 𝑎𝑣𝑎𝑙 and 𝑡𝑣𝑎𝑙 ,
a parameter 𝑑 , and sync 𝑡ℎ𝑒𝑟𝑚𝑜𝑠𝑡𝑎𝑡_𝑒𝑣𝑡 and 𝐴𝐶_𝑎𝑐𝑡 .
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A linear constraint over clocks, discrete variables, and param-

eters may guard a transition i.e., a transition can be taken only if

the guard is satisfied. For example, 𝑡𝑣𝑎𝑙 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 guards the

transition from 𝑆1 to 𝑆2. Clocks and discrete variables can be up-
dated along with a transition. A clock can be updated to a linear

combination over clocks, parameters, and discrete variables; a dis-

crete variable can be updated to a linear combination over discrete

variables. For example, from 𝑆1 to 𝑆2, 𝑐 is reset to 0 and 𝑎𝑣𝑎𝑙 is
updated to 0. A clock tracks the elapsed time since its last reset and

all the clocks evolve at the same rate. A state in a PTA may have an

invariant as a linear constraint over clocks, discrete variables, and

parameters e.g., the state 𝑆2 has the invariant 𝑐 < 60 ∗ 𝑑 . It means
that the PTA can stay at 𝑆2 for no longer than 60 ∗ 𝑑 time units.
To summarize, the PTA in Figure 8 starts at 𝑆0 and transitions

to 𝑆1 when the sync 𝑡ℎ𝑒𝑟𝑚𝑜𝑠𝑡𝑎𝑡_𝑒𝑣𝑡 is received from the thermo-

stat model (not shown here). We use ? for a receiving sync (e.g.

𝑡ℎ𝑒𝑟𝑚𝑜𝑠𝑡𝑎𝑡_𝑒𝑣𝑡 ), and ! for a sending sync (e.g., 𝐴𝐶_𝑎𝑐𝑡 ) . At 𝑆1, if
the guard is satisfied, it synchronizes with the A/C model on sync

𝐴𝐶_𝑎𝑐𝑡 and updates 𝑎𝑣𝑎𝑙 to 0 for an AC.off() action, and resets the
clock 𝑐 . The PTA waits for time 60∗𝑑 at 𝑆2, and then returning to 𝑆0
and updates 𝑎𝑣𝑎𝑙 to 1, while synchronizing with an A/Cmodel using
sync 𝐴𝐶_𝑎𝑐𝑡 . Multiple PTAs are usually needed to model a system.
Clocks, discrete variables, and parameters are shared among all

PTAs. Transitions with the same sync across PTAs can be taken

only if all the PTAs containing this sync can take the transition.

5 Modeling Smart Apps

As discussed in Section 3, naive parsing of apps into PTAs can cause

scalability, expressiveness, or correctness issues. In this section, we

first elaborate the main app features and then discuss the modeling

choices we considered and their trade-offs. Finally, we explain our

parsing algorithm to auto-generate PTA models from source code.

5.1 Features of Modern Smart Apps

We discuss some of the app features in Section 2.1. Table 2 shows

a more exhaustive list of features. SmartThings apps inherit basic

features (e.g., values (v), expressions (e) and control flow statements)

from its underlying programming language Groovy. Besides, these

apps also support domain-specific constructs.

First, a smart app can store and access values in a database

using the state.x, construct where x is a user-defined entry in the

database. For example, an app that counts the number of events can

use state.counter which is incremented when an event is received.

Apps use the state construct to store discrete or time values.

Second, a smart app can interact with devices by receiving events

or sending actions to them. It can also poll for the current state of a

device using currentState, e.g., reading the temperature value from

a thermostat TH using TH.currentState(“temperature”). In addition, a

smart app can get all events issued from a device dvc from a specific

time t using dvc.eventsSince(t), called device history polling.

Finally, smart apps offer an extensive set of constructs for timed

behavior. For example, an app can schedule actions using runIn(e,f)

(which calls function f at a time determined by the expression e) or

do things periodically using runEvery(e,f) (which repeatedly runs f

after some duration determined by e), schedule(e,f) (which runs f

everyday at the time determined by e). Similarly, an app can use

unschedule(f) to unschedule a previously scheduled execution of f.

Feature Example constructs

Basics values, expressions (e.g., a+b), if, while, s1;s2
Global state state.x
Device interaction event, action, currentState, eventsSince
Timed commands now, runIn, runEvery, schedule, unschedule

Table 2: Constructs of SmartThings apps
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Figure 9: Two ways to model a runIn command

5.2 Modeling Challenges and Approach

Given the aforementioned app features, we discuss their modeling

challenges and our approach to addressing them.

Timed Commands: We can treat timed commands like regular

synchronous function calls. Figure 9a shows the model of the app

in Fig 4 using this approach. The PTA waits at 𝑆2 for 60∗𝑑 duration
before executing the action 𝐴𝐶.𝑜𝑛() and returns to the initial state.
The PTA is blocked at state 𝑆2 for 60 ∗ 𝑑 . But, the timed commands
in Table 2 are non-blocking. They schedule a function and return. A

scheduler in the smart home framework executes these functions

at the specified time. While a function is waiting to be executed,

another execution of the app may unschedule the function or update

any state which the scheduled function uses. Hence, we need to

model the timed commands in a non-blocking way.

A naive solution is to add a self-transition at 𝑆2 in Figure 9a that
receives 𝑡ℎ𝑒𝑟𝑚𝑜𝑠𝑡𝑎𝑡_𝑒𝑣𝑡 . But we still cannot update state variables
or unschedule calls. Another solution is to add a True transition from

𝑆2 to 𝑆0, introducing non-determinism. Now a later app execution

can happen and update state and unschedule actions. But, if that

transition is taken, the scheduled action will not happen. Hence, we

create a separate PTA for each timed command shown in Figure 9b.

The PTA synchronizes with another PTA on 𝑟𝑢𝑛𝐼𝑛_𝑓 𝑢𝑛𝑐 sync at
𝑆2. The other PTA waits for time 60𝑑 at 𝑆3 and executes the action,
while the first PTA returns to 𝑆0. When a function is scheduled

multiple times by subsequent calls, PSA only model the execution

of the latest scheduled function, which is also done by SmartThings.

Note that modeling the earliest one is straightforward.

Device Interactions: To model app interactions with devices, we

use the PTA primitive sync, that allows apps models to synchronize

with devicemodels. For example, in Figure 9b, the sync 𝑡ℎ𝑒𝑟𝑚𝑜𝑠𝑡𝑎𝑡_𝑒𝑣𝑡
synchronizes transition between thermostat model and the app

model. Besides events and actions, smart apps also poll the current

and past device states. We implement current device state polling

as reading the device value from its model. We discuss polling in

Section 6.2. Note that PSA can also model event polling as compared

to trigger-action. We do not model polling device history.

Global State:We model discrete-valued state using discrete vari-

ables e.g., a 𝑠𝑡𝑎𝑡𝑒.𝑐𝑜𝑢𝑛𝑡𝑒𝑟 variable that counts the total events re-
ceived. State variables are shared among the functions in an app,

while local variables are local to a particular function. PSA models

both using discrete variables. We append function identifiers to

local variables to differentiate them across functions.
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Figure 10: Measuring elapsed time using clocks.
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Figure 11: Illustration of parsing the example app for Figure 4

State variables also store time. Figure 10 shows a code snippet

that stores time, when themotion.active event is received. On receiv-

ing the contact.open event, it measures the elapsed time between the

two events. We can naively model it as we model discrete state, and

replace discrete variables with clocks. Hence, there will be a clock 𝑐1
for state.motion, and another clock 𝑐2 for the call to now(). At line 4,
the PTA will assign the value of 𝑐2 to 𝑐1 as 𝑐2 = 𝑐1. Then 𝑐1 will be
stopped at all states so that its value does not change. At line 7, the

PTA will do 𝑐2−𝑐1. But, having stop-watches in model significantly
increases verification time. Essentially, time-valued state variables

measure the elapsed time. Recall that in PTA, clocks also measure

the elapsed time since their last reset. Hence, we introduce a clock 𝑐
for state.motion, and reset it when we receive motion.active at 𝑆0 in
Figure 10. When contact.open event is received, the value of 𝑐 gives
the elapsed time since motion.active. We parse line 7 as 𝑐 > 3. This

approach results in less number of clocks and no stop-watches.

Unschedule: An unschedule(f) call requires removing function f

from the list of scheduled functions. PSA uses a flag variable to

track if unschedule has been called on a function f. If the flag is

true, the transition to the PTA of f is not taken.

We also provide primitives to capture other features such as

values, expressions, and conditionals, omitted here for brevity.

Unsupported APIs:We do not model polling past device states

(eventsSince) as there can be an indefinite number of past states.

5.3 Parsing Algorithm

Our parsing algorithm has two phases. In the first phase, we parse

the preferences section in the app code to get the names and types of

all user inputs. We also parse subscribe calls to generate a map from

events to handlers. We use this map to generate PTA in a bottom-up

fashion for each handler function in the second phase. We also do

taint analysis to create our model with minimum variables.

Example:We illustrate the parsing of the app in Figure 4. First, con-

sider the parsing of the runIn function (Figure 11a). The algorithm

first parses the expression 60*d. It generates a PTA (highlighted with

12
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eval := eval+

env_attr_dec?

env_attr_evt!
eval := eval- step env_attr_dec?
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step
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Discrete step = 1
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Const max = eMAX

step
0

env_attr_evt!
eval := eval

eval = [min, max]

eval = [min, max]

eval = [min, max]

Figure 12: PTAModel for a non-categorical environment attribute.

dotted lines) with one state for 60 which is parsed as a constant and

another state for 𝑑 which is parsed as a 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 (𝑝). The return
value of the PTA is 60𝑑 . For function call func, which contains an
AC.on() action, the generated PTA issues a sync𝐴𝐶_𝑎𝑐𝑡 and sets 𝑎𝑣𝑎𝑙
to 1 for 𝐴𝐶.𝑜𝑛() (highlighted in dashed lines). To finish the parsing
for runIn, the two PTAs are composed as shown in Figure 11a. The

algorithm adds a state 𝑟3 with invariant 𝑐𝑙 < 60𝑑 and adds a transi-
tion to 𝑓 𝑢𝑛𝑐 at 𝑓0 with guard 𝑐𝑙 >= 60𝑑 . To model runIn command
(5.2), we also add a sync to synchronize with the handler PTA.

Now, we consider the handler function, as shown in Figure 11b.

First, the algorithm parses the condition and the statements appear-

ing in the if statement. The parsing of the condition is highlighted

with dotted lines, and the first statement in if (AC.off()) is high-

lighted with dashed lines. The second statement which is the runIn

command is shown in the dotted-dashed line. We add 𝑟𝑢𝑛𝐼𝑛𝑓 𝑢𝑛𝑐 to
synchronize with the 𝑟𝑢𝑛𝐼𝑛 PTA. The variable 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑 tracks if
𝑓 𝑢𝑛𝑐 has been scheduled before. This example executes the earliest
schedule. These PTA are later composed together to model the

handler function. Finally, our algorithm adds an initial state ℎ0 for
the handler, a transition from the final state 𝑟1 of the PTA for the

if statement, and a transition from ℎ0 to 𝑒 (the initial state of if)
with a sync thermostat_evt indicating the subscribed event.

6 Modeling Devices, Environment and Intents

In this section, we explain how we model the environment at-

tributes, devices, and safety properties.

6.1 Modeling Environment

The environment models: 1) trigger changes in sensor states, and 2)

react to app actions. We use the term environment events for triggers

that cause a state change in sensors, and environment effects for

changes in environment attributes that result from app actions

on the devices e.g., a heater.on() causes the temperature to rise.

Environment attributes can be categorical (e.g., motion can either be

present or absent) or non-categorical (e.g., temperature). Modeling

environment attributes as discrete pose the following challenges:

• State Space Explosion: Some environment attributes can blow up

the state-space. For example, an environment model for tem-

perature with a granularity of 1F. Multiple apps together, using

different environment attributes, exacerbate the problem.

• Modeling Environment Effects: Environment effects are challeng-

ing to model because actuator actions can affect each environ-

ment attribute differently, e.g. an A/C being turned on leads to a

more significant temperature decrease than a fan.

To handle the first challenge, prior work models the critical states

only [9, 23], which are the minimum and maximum values, or

other values used in the app e.g., if an app turns A/C on when the

temperature exceeds 76F, the temperature model will have three

states for minimum and maximum values and for 76F. The critical

states are not always obvious due to user-configurable inputs which

leads to inexpressive models. Another solution is to increase the
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Figure 13: PTA for environment sensor device.
granularity of discretization, e.g., a temperature model with a step

size of 5 will have states where temperature directly jumps from

60F to 65F. The larger the size of these steps, the less accurate the

results. In PSA, we use this approach with a step size of 5.

To handle the modeling of environment effects, we can precisely

model the effect of a device on the environment, e.g., if an A/C is

turned on for 1 min, it causes a 2F decrease in temperature. But, this

information is highly specific to the user’s house, device vendor, etc.

Another approach is to generalize the environment effects as either

increasing or decreasing for non-categorical environment attributes,

while for categorical attributes, there is an effect for each value e.g.,

present and absent for motion attribute. As a result, turning on the

A/C and fan, both will cause a decreasing effect on the temperature

model. PSA models environment effects using this approach, as we

observe that this approach is enough to yield useful results.

Environment Metadata: PSA generates environment attribute

models using this metadata. For a categorical attribute (e.g. motion),

we define its states(e.g., present and absent) in the file. For non-

categorical ones, we use domain knowledge to define their ranges

(e.g., 60F-80F for temperature) (Appendix B.1).

PTA of Environment Attributes: Figure 12 shows the PTA for a

non-categorical environment attribute. In the initial state 𝑆_0, the
attribute value 𝑒𝑣𝑎𝑙 can non-deterministically increase or decrease
by a fixed step. On each value change, it synchronizes with devices

that report on that environment attribute using sync (e.g., a thermo-

stat reports on temperature). The environment attribute model can

be influenced by the effects of increase or decrease. When increase

effect is received, the model transitions to 𝑆_1 where its value only
increases. We add an invariant to each state so that the attribute

value remains within [𝑚𝑖𝑛,𝑚𝑎𝑥]. This range is present in the envi-
ronment metadata file. For example, for app model in Figure 9b,

the action 𝐴𝐶_𝑎𝑐𝑡 affects the temperature model (Appendix B.5)
which will have temperature_evt as env_attr_evt in Fig 12.

Interaction Models: These map interactions of app actions on

environment attributes and sensor models. For example, an interac-

tion model will map𝐴𝐶_𝑎𝑐𝑡 sync with 𝑎𝑣𝑎𝑙 = 1 for app in Figure 11

with the temperature model using 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒_𝑑𝑒𝑐 sync (Appen-
dix B.4). PSA generates these models using the device-environment

library which maps devices actions to environment effects e.g.,

𝐴/𝐶.𝑜𝑛() → 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒.𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 (Appendix B.2). These ef-

fects are increasing or decreasing for non-categorical attributes, and

actual values for categorical attributes. We manually built the li-

brary by looking at the specification of smart home frameworks

and devices. It can easily be extended to interactions of new devices.

6.2 Modeling Devices

Devices in a smart home framework: 1) trigger apps that subscribe

to events from these devices, 2) react to changes in the environment

and app actions, 3) record the time when it changes its state, 4) sup-

port device state polling and triggered events. Our device models

must support all these. To model the devices, we first categorize

devices by surveying the smart home market and design separate

0 1 2

1 or 2 ?
:= 0

:1 or 2?
=

& <

> =
:=0

1 or 2? Sync 1
Sync 2
Disc val = 0
Clock c = 0
Disc = 5

Figure 14: Device conflict model

PTA model templates for each type of sensor device. We categorize

them as: 1) Environment sensor devices which are influenced by

the environment e.g., temperature sensor. 2) Actuator sensor de-

vices that are influenced by actuators either directly e.g., A/C as

sensor, or indirectly e.g., a contact sensor for a door. 3) Independent

sensor devices that are not influenced by environment attributes

or actuators, e.g., presence sensor. Environment sensor devices and

actuator sensor devices are modeled the same way.

Figure 13 shows the device model for environment sensor de-

vices. In the initial state 𝑆_0, the model synchronizes on the sync
env_attr_evt with the relevant environment attribute model e.g.,

a temperature sensor synchronizes with the temperature model

using temperature_evt. At 𝑆_1, which is an urgent state (equiva-

lent to having an invariant of 𝑐𝑙𝑜𝑐𝑘 ≤ 0), if the updated value of

𝑒𝑣𝑎𝑙 is not equal to current 𝑑𝑣𝑎𝑙 , it updates 𝑑𝑣𝑎𝑙 . It also triggers
the app models using the sync sensor_evt. For example, the tem-

perature sensor model will trigger apps that subscribe to it using

temperature_evt. When the sensor updates its value, it also resets

the clock 𝑑𝑐𝑙𝑘 , so that apps can use 𝑑𝑐𝑙𝑘 to get the time elapsed

since the sensor changed state. To poll device state, an app model

reads the value of the variable 𝑑𝑣𝑎𝑙 . The guard 𝑑𝑐𝑙𝑘 > 0 on the 𝑆0 to
𝑆1 transition ensures that the sensor does not have multiple values
in zero time. We show the thermostat model for app in Figure 4 in

Appendix B.5. PTA models for independent sensors (e.g., presence

sensor) non-deterministically keep switching states (e.g., presence

active or inactive) which we do not show here for brevity.

Device Metadata: This file is used to generate device models. The

file contains a list of device types as either environment sensor,

actuator sensor, or independent sensor (Appendix B.3). For the

environment/actuator sensor, we list the environment attributes/ac-

tuator devices that it reports on (e.g. temperature for temperature

sensor, door for a contact sensor). For the independent sensor, we

list its values (e.g., absent and present for presence sensor).

6.3 Modeling Intents

We use a well-known technique of using observers [5] to model

safety properties. These are effect-free PTA models; i.e., they do not

have any effect on the environment, sensor, and app models. The

observer contains a special bad state that has no outgoing transition

The verification then checks the reachability of this bad state. Now

we model P1 and P3 to illustrate how we model complex safety

properties as observers and show the rest in Appendix B.6, B.7.

Conflicting Actions: Consider two apps that issue actions 𝑎𝑑,1
and 𝑎𝑑,2 on device 𝑑 . The observer model for device conflicts is
shown in Figure 14. The model waits for 𝑎𝑑,1 or 𝑎𝑑,2 at 𝑆0, and then
measures the time between the next action. If the time is less than

𝑥 and the two actions on 𝑑 are conflicting, (checked by storing the
value of the first action in 𝑐𝑢𝑟_𝑣𝑎𝑙 and then comparing this value
against the device state 𝑠𝑑 when the second action happens), the
model reaches a bad state. This model can be extended to include

more actions from apps. Environment conflicts are also similar.
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Figure 15: Observer model for Deadline Violation

Deadline Violation: Let 𝑎𝑑, be an action on device 𝑑 , and 𝑎𝑑′, be
an action on device 𝑑 ′, and let 𝑎𝑑, → 𝑎𝑑′, be a time bound action,
bounded by time duration 𝑥 . Figure 15 shows the observer model
for deadline violations, which transitions to a bad state if 𝑎𝑑′, does
not happen within time 𝑥 after receiving 𝑎𝑑,. This model can be
extended to more actions and environment attributes.

7 Implementation

Our prototype implementation of PSA for the SmartThings plat-

form has two main implementation components: the parser and

the model generator. We implement our parser using Groovy. Our

parser uses the abstract syntax tree (AST) of the app code for both

of its passes. The parser visits AST nodes at the compiler’s semantic

analysis phase, where the Groovy compiler performs consistency

and validity checks on the AST. Our implementation uses Groovy-

ClassVisitor to extract the entry points and the structure of the

analyzed app, and GroovyCodeVisitor to extract method calls and

expressions inside AST nodes. The parser outputs PTA in a JSON

format. Our model generator is written in Python. It takes the

output of the parser and generates the required environment and

device models. We use the IMITATOR PTA model checking tool [6]

for its maturity. We express our models for the apps, intents, and

environment interaction in the IMITATOR DSL.

8 Evaluation

We perform experiments on CloudLab nodes [16] with a 10-core

2.6GHz Intel E5-2660 processor and 160 GB of RAM. We use IMI-

TATOR version 2.12. Our dataset has 86 SmartThings apps [33]. To

build this dataset, we look at all the open source apps and exclude

those which do not perform actuation, are integration apps between

platforms (e.g. IFTTT and smartThings connect app), or if they use

unsupported APIs (Section 5). These apps use sensors such as hu-

midity, motion, water, temperature, illuminance, 𝐶𝑂2 and contact

sensors, and door locks and electricity meter. These apps actuate

on devices like door locks, cameras, vents, fans, lights, A/C, heater,

HVAC, thermostat, garage doors, and valves. Table 3 summarizes

the main features of these apps. These apps contain a mix of all app

APIs discussed in Section 5 and hence are representative.

Total Apps 86

Apps with User

Inputs

51 (59%)

Apps with Timed

APIs

37 (43%)

Apps with Device

Polling

33 (38%)

Stateful Apps 18 (21%)

Table 3: Summary of apps

Figure 16: Example of a device

conflict where a𝐶𝑂2 vent is turned

off when𝐶𝑂2 levels are high

8.1 Findings

We run PSA on 86 apps to detect violations mentioned in Section 2.2.

For conflicting actions, we run all apps in pairs, to see if they con-

flict with each other. We find 338 device conflicts (P 1.1), and 265

environment conflicts (P1.2). Around 95% of our device conflicts in-

volve devices such as lights, A/C, and heater. Our indirect conflicts

involve environment attributes such as temperature and humidity.

We find 18 co-occurrence violations (P2), 8 deadline violations (P3),

4 blocked actions (P4) and 7 invalid action sequences (P5). Table 4a

summarizes our results with some examples. Of the total violations,

23% can be avoided with safe input configurations e.g., the second

example for P5 in Table 4a. Some of the violations we find are par-

ticularly dangerous. For example, Figure 16 shows a device conflict

between the co2-vent and the energy-saver apps. The vent fan is

turned on when the 𝐶𝑂2 level is too high. The energy saver app

turns it off because the energy consumption crosses a threshold.

Ground Truth: To get ground truth for violations, we emulate the

apps in SmartThings. For each violation that PSA finds, it outputs

a trace in the form of a tree, where if the leaf node is a violation,

we extract the path from root to that leaf node. This path gives us

a series of events and time values that resulted in the violation. We

use this sequence of dated events, and play them in SmartThings to

reproduce the violation. SmartThings allows users to define virtual

devices that are controlled by programmable device handlers. To

feed event sequences output by PSA to real apps in this virtualized

environment, we write scripts to generate custom device handlers.

These device handlers generate fake events as specified by the PSA

output. We compare the log trace of SmartThings with PSA to

obtain ground truth. We also test for false negatives (Section 8.3).

However, testing for all possible scenarios is very hard in case of

no violation, specially because of configurable user inputs.

8.2 Comparison with baselines

In Section 2, we argue that not modeling the stateful and timed

behavior of apps can lead to false positives and false negatives.

Now, we quantitatively compare PSA against two baselines. The

first baseline does not model state and models timed events but

not duration in apps (B1). The second baseline models discrete

state but not time in apps (B2). Both of these do not model indi-

rect environment-device interactions such as heater on action will

increase temperature, causing thermostat reading to rise. B1 repre-

sents SiFT [23], and B2 represents Soteria [9]. Since prior efforts

do not directly apply to our specific setting, these baselines are

approximations of prior work. Table 4b summarizes our results.

As discussed before, PSA outputs a set of safe configurations.

We separately verify PSA output (Section 8.3) for correctness. For

testing against the baselines, we use pre-configured apps. To con-

figure an app for a property, we pick an input value from the set of

safe configurations output by PSA and one value from unsafe con-

figurations. For cases where no safe configurations exist, we pick

a random value to configure that app. This approach allows us to

identify false positives and false negatives. We get the ground truth

by using the same approach we described in Section 8.1. Except

here for non-violations, we play the apps with the chosen configu-

ration to see if the violation happens. We define false positives (for

a given app configuration) when the violation does not exist but the

verification tool outputs a violation. A false negative is when the

verification tool returns no violations, when in fact one does exist.

Table 4b highlights the false positive (FPR) and false negative (FNR)

rate for B1, B2 and PSA for all the 86 apps. The last column high-

lights if we can reproduce the violation using the counter-example
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Prop. Total Examples Apps involved in Example

P1.1 338
(ii)𝐶𝑂2 vent is turned off when𝐶𝑂2 levels are too high co2-vent, energy-saver
(iii) Door is locked and unlocked at the same time unlock-it-when-I-arrive, lock-it

P1.2 265
(i) Vent fans to dehumidify, and humidifier are on auto-humidity-vent, humidifier
(ii) A/C and heater are turned on at the same time turn-it-on-when-im-here, Its-too-cold

P2 18
(i) Lights and A/C are turned on when there is no one in the house my-light-toggle, turn-off-with-motion
(ii) Heater, thermostat, etc., are turned off when the user is at home switch-changes-mode, keep-me-cozy

P3 8
(i) Door remains unlocked for more than 5 min unlock-when-I-arrive
(ii) Lights are not turned off within 10 min of no motion light-up-the-night

P4 4
(i) Water sprinklers cannot turn on because the water supply is off close-the-valve, sprayer-controller
(iii) Thermostat set-points cannot be set because thermostat is off keep-me-cozy, thermostat-auto-off

P5 7
(i) Too many same notifications sent to the user very close in time text-me-when
(ii) Lights are turned on and off frequently causing a strobing effect the-flasher

(a)

Prop. BL FPR FNR CE

P1.1
B1 0.35 0 0.19
B2 0.27 0 0.39

P1.2
B1 0.21 0 0.22
B2 0.16 0 0.41

P2
B1 0.11 0 0.28
B2 0.6 0 0.45

P3-5
B1 0 1 0
B2 0 1 0

PSA 0 0 1

(b)

Table 4: Summary of our findings in 4a. Comparison with baselines in 4b (Prop. = property, BL = baseline, CE = counter-example)

provided by the tool. For P1 and P2, PSA reduces false positives

by up to 35%. In cases, where we drop state and timed behavior

of apps, the counter-examples also lacks that information, which

makes it hard to reproduce that violation in B1 and B2. Properties

P3 and P5 cannot be verified without modeling time. Hence, a 100%

false-negative rate depicts that tools representative of B1 and B2

cannot find any such violation. For property P4, both B1, and B2

cannot find any violation that PSA finds because they do not model

indirect environment interactions (e.g. by turning the thermostat

off, setting heating setpoint will not have any effect).

8.3 Validating PSA

We use a multi-pronged validation approach as discussed below.

Test Apps: To check the correctness of PSA for false negatives, we

create a representative set of test apps that cover all APIs of Smart-

Things (Table 2). For each test app𝐴, we generate𝐴′ such that it has
the same logical structure, but its output(device action) is opposite

to that of A such that they result in a device conflict (Appendix C.1).

We find that PSA successfully points out all conflicts.

Real Apps: To check for false positives, we consider all violations

output by PSA for device conflicts. For each violation, we randomly

sample 10 paths in the analysis trace that lead to a violation. We

replicate them in our SmartThings virtualized environment. If we

observe the violation, we declare it as a true positive, else mark it

as a false positive. We did not find any false positives. To test for

false negatives, we input a random sample of 100 app pairs to PSA,

and check for violations. In case of no violation, we generate 50

random event sequences of length 10 with an arbitrary duration (0s

to 1000s) between each event to trigger apps. We run these random

event sequences in our virtualized smart home environment to

check if we find a violation (Appendix C.2). We did not find any

false negatives. We understand that this testing methodology is by

no means exhaustive. Testing for all possible scenarios is very hard,

specially because of configurable user inputs. Hence, we randomly

pick samples and test on those to get some confidence on our results.

Correctness ofModels: To evaluate the correctness of models, we

feed an event sequence to real apps in the virtualized environment,

and compare the logs to the output trace of PTA models (Appen-

dix C.3). For each app, we generate 50 event sequences of length

10. We introduce arbitrary (0s to 1000s) duration between events.

If the output trace of the models is the same as SmartThings logs,

then our app model is consistent with the app. We find that app

models generated by PSA are consistent with real apps.

(a) (b)

Figure 17: Time to verify a given deployment size for P1 (a). Vari-
ation in verification time across apps for P1.1 and P1.2 (b).

8.4 Performance of PSA

We denote the number of apps in a smart home as the “deploy-

ment size”. Then, from our 86 smartThings app dataset, we sample

100 combinations at random for a given deployment size (n=2 to

n=8) and report the time to verify these apps for a given violation

as shown in Figure 17a. The time for the analysis to complete in-

creases exponentially with an increase in deployment size. The

significant variations in the box plot highlight the varying com-

plexity of real apps. For a given deployment size, if the random

set generated involves less complex apps, the time for analysis is

also small. Figure 17b shows how the computation time varies for

a fixed deployment size. If an app has too many event handlers,

timed APIs, user inputs, then the analysis will take a lot of time.

9 Related Work

We discussed the key prior work [9, 14, 23, 28, 31] in Section 2.

Here, we discuss other related efforts.

IoT Security: Many existing works formally analyzing IoT de-

vices [2, 27] but do not model application behaviors and environ-

ment interactions. Croft et al., looks at control programs such

as home automation and SDNs and models them as timed au-

tomata [13]. It does not model the interaction between devices,

environment and apps, and does not handle user-configuration.

Similarly, Alhanahnah et al., models app interactions in a smart

home but skips state and time in apps [1]. Many prior works also

focus on run-time conflict detection and resolution [15, 17, 24, 25],

and static conflict detection [29, 36] which assume stateless-TAP

rules. Our work considers a broader class of violations than these

for complex stateful-TAP apps. DepSys [28] also finds conflicts in

apps at static time, but it requires the developers to define the trig-

gers and actions of the app in a metadata file, and does not model

app behavior. IoTGuard [10] and Wang et al., [38] instrument apps
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to check for safety properties at run time, which is complementary

to our work. IoTMon [14] marks smart home apps’ interaction as

risky or safe, by looking at their triggers and actions. It does not

model the internal app behavior and cannot reason about viola-

tions that PSA finds. Similarly, Helion [26] uses statistical language

modeling to generate home scenarios to automatically define safety

intents. This work is complementary to PSA.

CPS and Verification: Using timed automata (TA) to model cyber-

physical systems is not new. Kumar et al. [21] models industrial

automation systems using TA. Sun et al., uses TA to formally verify

an aerial video tracking system [35]. Croft et al. use it to formally

verify control systems [13]. We build on this work and make it

practically useful for modeling smart home apps.

10 Discussion and Conclusion

The interaction of apps in smart homes can cause safety violations.

We are not the first to identify this issue; however, we note that prior

efforts have key expressiveness issues in tackling the timed, stateful,

and parameterized behavior of apps and their complex interactions.

To overcome these limitations, we design PSA which uses PTA to

model a smart home. We evaluate PSA on 86 SmartThings apps. We

compare PSA against two baselines. We find 19 previously missed

intent violations and have 35% fewer false positives. We discuss the

limitations and future directions for PSA below:

Intents Library: Our Intents library can be extended by the com-

munity or the smart home vendor. Prior works like Helion [26] can

also be used to auto-generate intents based on home data.

Risky vs. Benign violations: Some violations discovered by PSA

maybe benign. To screen violations, there is complementarywork [14]

which try to categorize app interactions as risky or not.

Scalability: As we envision PSA to be used offline by the smart

home vendor, the high verification time should not be a problem.

In the future, we intend to prune our models by removing the app

interactions irrelevant to the property using taint analysis. We are

also looking at parallel verification approaches [6] for PTA.

Need for Source Code: Similar to prior work [9, 31], PSA requires

app code which is reasonable if vendor deployed. However, we can

use blackbox modeling techniques to infer app behavior ( [14]).

Such models will be noisy but they do not require source code.

Usability:We plan to conduct user studies to improve the output

of PSA so that non-expert users can understand and take action.

EnvironmentModels:Discretemodeling of environment attributes

requires no manual effort in PSA. However, PSA requires a domain

expert to define more complex environment models.
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A Modeling Choices

The Table 5 summarizes our modeling choices across three dimen-

sions: 1) Time, 2) User Inputs, 3) Environment Attributes.

Environment
User Input

Time
Discrete Continuous

Discrete
Enumeration FSM Timed Automata [4], Timed

PetriNets [32]
Parameterization Symbolic

Automata
Parameterized Timed Au-
tomata [4], Parameterized
Timed PetriNets [32]

Continuous
Enumeration - Hybrid Automata (HA) [18]
Parameterization - Parameterized HA [4]

Table 5: Choices for modeling abstractions for smart home

B Smart Home Modeling

We give details regarding our smart home modeling. We first pro-

vide example of environment metadata in Appendix B.1, device

environment library in Appendix B.2, and device metadata in Ap-

pendix B.3. Then, we give example of an interaction model in Ap-

pendix B.4. We also give a high-level picture of how all the models

interact in Appendix B.5. Finally, we show the PTA models for

properties P4 and P2 in Appendix B.6 and B.7.

B.1 Environment Metadata

Examples of a few entries in the environment metadata is shown

in Table 6. For categorical environment attributes e.g., motion, we

also list their states.

Table 6: Environment Metadata

Environment Attributes States

Carbon Monoxide clear, detected, tested

Carbon Monoxide number

Motion present, absent

Smoke clear, detected, tested

Sound detected, clear

Temperature number

Air Quality number

Illuminance dark, light

Illuminance number

Energy Usage number

Dust present, absent

B.2 Device-Environment Library

We give examples of a few entries in the device environment library

in Table 7. For each device type and an action, the library lists

environment effects for the attributes that it affects.

B.3 Device Metadata

We give examples of a few entries in the device metadata. For each

sensor device, we list its type. In case of an independent sensor

device, we list its states. In case of device and environment sensor

devices, we report the device/environment attribute it reports on.

B.4 Interaction Model

Figure 18 shows the interaction model that maps the actions of A/C

on the temperature environment model using temperature effects

of 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒_𝑖𝑛𝑐 and 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒_𝑑𝑒𝑐 .

Table 7: Device-Environment Library Example

Device Type Action Effect

Door open contact.open

Door close contact.close

Alarm ring sound.detected

Light on illuminance.increasing

Light off illuminance.decreasing

AC on temperature.decreasing

AC off temperature.increasing

TV on power.increasing

TV on sound.detected

Device Type Details

Presence Sensor Independent detected, not detected

Contact Sensor Device Door

Motion Sensor Environment motion

Shock Sensor Independent present, absent

Smoke Detector Environment smoke

Sound Sensor Environment sound

Heater Device heater

Water Sensor Environment water

Valve Device Valve

Dust Sensor Environment Dust

Illuminance Measurement Environment illuminance

AC Device AC
Table 8: Device Metadata Examples

𝑆0 𝑈 , 𝑆1

AC_act?

𝑎𝑣𝑎𝑙 = 0
temperature_inc!

𝑎𝑣𝑎𝑙 = 1
temperature_dec!

Init:
Sync AC_act
Discrete 𝑎𝑣𝑎𝑙
Sync temperature_inc
Sync temperature_dec

Figure 18: Interaction model that maps actions of A/C on temper-
ature model.

B.5 Interaction between all models

We illustrate how all the models interact with each other in Fig-

ure 19. The temperature model synchronizes with the thermostat

model using 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒_𝑒𝑣𝑡 . If the temperature value 𝑒𝑣𝑎𝑙 has
changed, the thermostat model synchronizes with the app model

using 𝑡ℎ𝑒𝑟𝑚𝑜𝑠𝑡𝑎𝑡_𝑒𝑣𝑡 . The app issues an 𝐴𝐶_𝑎𝑐𝑡 which is synchro-
nized with the interaction model, and the device conflict model. The

interaction model then issues temperature effects 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒_𝑖𝑛𝑐
or 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒_𝑑𝑒𝑐 depending on the AC state 𝑎𝑣𝑎𝑙 .

B.6 Blocked Action Violation

Consider 𝑎𝑑, be an action on device 𝑑 , and 𝑎𝑑′, be an action on
device 𝑑 ′. The observer model to check if 𝑎𝑑, blocks 𝑎𝑑′, is shown
in Figure 20. The model transitions to 𝑆1 when 𝑎𝑑, is received, and
then it transitions to the state𝑔𝑜𝑜𝑑 if 𝑎𝑑′, is received. Then we check
the reachability of the 𝑔𝑜𝑜𝑑 state, indicating that 𝑎𝑑′, is not blocked
by 𝑎𝑑,.Note that in addition to checking if 𝑎𝑑′, can happen after 𝑎𝑑,,
we also need to check if 𝑎𝑑′, can happen at all. This will require
another model which transitions to 𝑔𝑜𝑜𝑑 state if 𝑎𝑑′, happens.
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Figure 19: High level interaction between allmodels illustrated for the app in example 4. The temperaturemodel synchronizes

with the thermostat model using 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒_𝑒𝑣𝑡 . If the temperature value 𝑒𝑣𝑎𝑙 has changed, the thermostat model synchro-
nizes with the appmodel using 𝑡ℎ𝑒𝑟𝑚𝑜𝑠𝑡𝑎𝑡_𝑒𝑣𝑡 . The app issues an𝐴𝐶_𝑎𝑐𝑡 which is synchronizedwith the interactionmodel, and
the device conflictmodel. The interactionmodel then issues temperature effects 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒_𝑖𝑛𝑐 or 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒_𝑑𝑒𝑐 depending
on the AC state 𝑎𝑣𝑎𝑙 .

𝑆0 𝑆1 𝑔𝑜𝑜𝑑

𝑎𝑑′,?

𝑎𝑑,?

𝑎𝑑,?

𝑎𝑑′,?

𝑎𝑑, or 𝑎𝑑′,?

Init:
Sync 𝑎𝑑,
Syns 𝑎𝑑′,

Figure 20: Observer model for Blocked Actions

B.7 Co-occurrence Violation Model

To implement Co-occurrence violation 2 in PSA, the observer model

listens for device events, to see if the required actions happen to-

gether. For instance, to check 𝑠𝑚𝑜𝑘𝑒_𝑠𝑒𝑛𝑠𝑜𝑟 .𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 → 𝑎𝑙𝑎𝑟𝑚.𝑜𝑛(),
the observer model listens for smoke sensor events, and if the value

is detected, then it checks if 𝑎𝑙𝑎𝑟𝑚.𝑜𝑛() action is issued. Let 𝑒𝑣𝑡𝑑

denotes an event from device 𝑑 , and 𝑠𝑑 denotes the device state,

then observer model to detect that action 𝑎𝑑′, happens when the
device state 𝑠𝑑 of device 𝑑 is equal to 𝑦 is given in Figure 21

𝑆0 𝑆1

𝑐 ≤ 1

𝑏𝑎𝑑

𝑎𝑑′,?
𝑒𝑣𝑡𝑑 ?
𝑠𝑑 = 𝑦
𝑐 := 0?

𝑎𝑑′,?

𝑐 = 1?

𝑎𝑑′,? Init:
Sync 𝑎𝑑,
Sync 𝑒𝑣𝑡𝑑

Syns 𝑎𝑑′,
Clock c = 0
Discrete 𝑦

Figure 21: Observer model for Co-occurrence violation

C Testing

Now we illustrate how we validate PSA for correctness.

C.1 Testing using Test Apps

Figure 22 shows the methodology for checking false negatives in

PSA using test app pairs which are logically equivalent but perform

the opposite device action leading to a conflict.

Figure 22: Testing methodology for checking if PSA has any false
negatives using app pairs for which we know the ground truth.

C.2 Testing using Real Apps

Methodology for checking the correctness of PSA output is shown

in Figure 23. In case of a violation, we play the counter-example

in the SmartThings virtualized environment and compare the logs

with PSA output. In case of no violation, we generate random event

sequences and emulate in SmartThings to reproduce the violation.

Figure 23: Checking the correctness of PSA output.

C.3 Correctness of Models

We illustrate our methodology to check for the correctness of our

generated PTA models for the apps in Figure 24. For each app, we

feed random event sequences to the PTA model of the app, and play

the same event sequences in SmartThings to trigger the app. Then

we compare the SmartThings logs with the PSA analysis trace.

Figure 24: Checking the correctness of PTA models.
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